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Series studies of the Potts model: II. Bulk series for the square 
lattice 
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t Department of Mathematics. University of Melbourne. Parkville, Vic.. Australia 3052 
t CSIRO, Division of Atmospheric Research. Private Bag 1, Mordialloc, Vic.. Australia 3195 

Received 19 April 1993 

Abstract. The finite-lanice method of series expansion has been used to extend low-temperature 
series for the partition function, order parameter and susceptibility of the q-state Potu model 
to order zS6 (i.e. U**), z4’, zB, z39, z39. z39, z35, z3’ and z3’ for q= 2.3 .4 . .  . . , 9  and 10 
respectively. These series are used to test techniques designed to distinguish first-order transitions 
from continuous transitions. New numerid values are also obtained for the q-state Poits model 
with q > 4. 

1. Introduction 

This is the second in a series of papers in which we study the critical behaviour of the 4- 
state Potts model in both two and three dimensions using series expansions derived from the 
finite-lattice method. The previous paper (Guttmann and Enting 1993), denoted I hereafter, 
gave the general expressions used to derive high- and low-temperature expansions for the 
4-state Potts model. In I, series expansions for the 4 = 2 (king) case on the simple 
cubic lattice were analysed. The present paper derives and analyses series for the bulk 
thermodynamic properties for Potts model on the square lattice for integer 4 ranging from 
2 to 10. 

A brief history of the model follows. After the itiitial paper by Potts (1952), the model 
attracted little attention for almost two decades. During the 1970s there was greatly renewed 
interest, with new exact results, series studies and renormalization group calculations as well 
as applications to phase transitions in surface films. A particular concern at that time was 
the failure of renormalization group calculations to reproduce the exact results for the order 
of the transition in two dimensions. A review by Wu (1982) described much of the work 
on the Potts model. 

The main exact results come from Potts (1952) and Baxter (1973, 1982). In particular, 
Potts (1952) located the critical temperature exactly for the two-dimensional Potts model 
on a square lattice by duality arguments. He found that Tc = AEj(kln(1 + a) and 
0 = $(U: + U;) = AE(1 - l/@. , (The energy is relative to the ground-state energy; 
other aspects of the notation are defined in section 2 below.) 

For 4 > 4 the model has a first-order phase transition, and Baxter (1973) obtained the 
free energy and latent heat in 1973, and subsequently the value of the magnetization at T, 
(Baxter 1982). The results are listed in tables 1 and 2 with the free energies converted 
to be consistent with our choice of zero ground-state energy. The free energy, f ,  defined 
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by Baxter (1973) is related to the free energy, F ,  which we define below through the 
dimensionless form F / A E  = f / A E  + 2. Further, Baxter showed that the values of the 
magnetization at Tc were the same for the square, friangular and honeycomb lattices-a 
consequence of the star-triangle relation. For q < 4 the model has a second-order phase 
transition. Indeed, for q = 2 the model is just the usual spin-i Ising model, while q = 4 is 
the ‘marginal’ q value, at which the exponents have confluent logarithmic cowctions. 

Table 1. Exact critical properties for q < 4, from the work of Pons (1952) and Baxter (1973). 
The internal energies U and free energy F are defined relative to a ground-state energy of zero. 
Numerical estimates of F, f A E  are also shown. 

4 2s G J A E  FdAE F./AE(series) 

2 0.414214 0.292893 -0.054826 -0.054825 
3 0.366035 0.422650 -0.059780 -0.059777 
4 0.333333 0.50000D -0.056708 -0.056722 

Table 2. Exact properties at the transition point for q 3 5, from the work of Pons (1952) and 
Bater (1973, 1982). Thc energies and hx energy are defined relvive to a ground-sute energy 
Of m. 

q kTJAE AM AUlAE CIA€ F J A E  
5 0.851 528 0.492 141 0.052919 0.552786 -0.05205 
6 0.807607 0.665181 0.201464 0.591752 -0.04738 
7 0.773059 0.749565 0.353277 0.622036 -0.043 I I  
8 0.744904 0.799837 0.486358 0.646447 -0.03935 
9 0.721 348 0833261 0599668 0.666667 -0.03608 
IO 0.701232 0.857 107 0.696049 0.683772 -0.03323 

Table 3. Exact critical exponents for two-dimensional Pons models. 
~~ 

9 a  B Y 8 ”  ’I A1 

2 0 118 714 15 1 114 4/3 
3 I/3 119 1319 14 5/6 4/15 23 
4 2/3 1/12 716 15 23 114 0 

The critical exponents and critical temperature for q < 4 are shown in table 3. The 
thermal exponent was given by Black and Emery (1981), following a conjecture of den 
Nijs (1979). Den Nijs (1983) also obtained the magnetic exponent, while Nienhuis (1982) 
obtained the (thermal) correction-to-scaling exponent A I .  The results are: 

2 ~ ( 2 - r )  2-(U = - = - 
yZ 3(1 - r )  

4r 
3(1 - r )  

A1 =- 
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with 
2 o < r 5 - cos-*(&j/2) < 1 for 0 < q < 4. n 

However, for q 4 certain properties still remain unknown. These include the value 
of the specific heat and of the isothermal susceptibility at the critical temperature. Various 
surface critical exponents and critical values are also unknown. 

Of even greater interest is the behaviour of the three-dimensional Potts model. As noted 
above, for the q = 2 (king) case, the low-temperature series and some high-temperature 
series have recently been extended in I. For q = 3, the three-dimensional Potts model is 
of particular interest as it constrains the order of the deconiinement transition in quantum 
chromodynamics. The key question is whether the q = 3, d = 3 Potts model transition is 
first or second order. This is discussed further in the third of our series of papers. 

The fact that the critical behaviour is known in the two-dimensional case makes it an 
ideal 'test-bed' for methods to distinguish first-order from second-order phase transitions. 
In this paper we have extended the low-temperature (and by duality, the zero-field high- 
temperature) series for the two-dimensional model for q = 2, 3, 4, . . . , 9, 10. By the use 
of the finite-lattice method (see I and references therein), quite substantial series extensions 
have been made. By using differential approximants (Guttmann 1989) to integrate the 
series, we have been able to clearly distinguish between first-order and second-order phase 
transitions. 

The layout of the remainder of the paper is as follows. In the next section we briefly 
describe the finite-lattice method and the nature of the results we thus obtained. In section 
3 we analyse the data. In section 4 we present a discussion of the results. 

2. Series expansions from the finite-lattice method 

The definitions and notation follow the usage of I. The standard q-state Potts model is 
defined on a lattice with each site having a 'spin' variable that takes on q possible values 
(denoted '0' to q - 1). An energy A E  0 is associated with each pair of interacting sites 
that are in different spin states, and an energy of 0 applies to pairs of interacting sites in 
the same state. We consider only the square lattice, with each site interacting only with its 
four nearest neighbours. Each site not in state '0' has an additional field energy H .  

The thermodynamic quantities can be derived from the partition function Z .  We choose 
the normalization such that the state with all sites in state '0' has zero energy. This particular 
normalization of the partition function is cominonly denoted A. 

We work in terms of the expansion variables z = exp(-AE/kT), p = exp(-H/kT) 
and the high-temperature variable U = (1 - z)/(l + (q - 1 ) ~ ) .  

For the square lattice, the high-temperature expansion for the partition function takes 
the form (see I for the general case): 

(1) A = q-'(l+ (q - l)z)'@(u) = q( l  + (q - I ) U ) - ~ @ ( U )  

@(U) = ~ l  + (q - I)v + . . . . 
with 

(2) 

For the low-temperature expansion, we use a modified field variable x = 1 - j~ and 

4 

truncate at order xz so that the partition function is expressed as 

A = A0 t x A l  $x2A2 + . . . . (3) 
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The zero-field partition function is expanded as 

On the square lattice, the duality relation takes the form 

(square lattice only) Adz)  = @(x)  

so that the transition point (assuming it is unique) occurs (Potts 1952) at 

.. (square lattice only). 
1 

ZE = U, = - 
1+&i 

The dimensionless free energy is given by 

F kT 
AE - A E  In' 

so that for IOW temperatures, the internal energy is given by 

the order parameter by 

and the susceptibility by 

Note that in I the expansions were expressed in term of U = z2, as only even powers of z 
occur for q = 2. For q 2 3 an additional 'transverse' susceptibility can be defined (Straley 
and Fisher 1973) but is not considered here. 

For T 2 T, the internal energy is given by 

where v is the lattice coordination number (4 in this case). Series expansions for the Potts 
model on the square lattice had been obtained previously by a number of workers. Kihara 
eral (1954) obtained the general-q zero-field free-energy series.to order zI6 (or equivalently 
to d6 by virtue of duality). Straley and Fisher (1973) obtained the general-q general-field 
low-temperature series to zI3. Enting (1974) analysed the field grouping for 4 = 3 to order 
pg, however, the series were not published directly, but rather as 'coded' partial generating 
functions, based on the formalism of Sykes et a1 (1965). 

The 3-state square lattice Potts model was the first application of the finite-lattice 
method (de Neef 1975, de Neef and Enting 1977). This work obtained the high-temperature 
expansion to order 23 (working in powers of AEIkT). The finite-lattice method was used 
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subsequently to obtain low-temperature expansions for A and M for q = 3 to order z3’ 
(Enting 1980). These series were extended to z3’ (and new series for x added) by Adler 
ef al (1982). The algorithm used in the present work is essentially unchanged from that 
used in the 1980 and 1982 studies, although the program has been modified to work with 
general integer values of q .  The increased number of terms that we have obtained reflects 
the increase in available computing capacity over the last decade rather than any major 
change to our technique. Recently, a preprint by Bhanot et a1 (1993) gives series for q = 3 
and q = 8 on the square lattice (and some new d = 3 series). They used a transfer-matrix 
method related to our approach but with a more complicated (and apparently less efficient) 
choice of boundary conditions for their finite-lattices. Their square lattice series extend 
earlier results but are slightly shorter than those presented here. 

The basic formulation of the finite-lattice method approximates the partition function 
per site, 2, as 

where r denotes a graph (with sites) which is allowed to become arbitrarily large and A 
is a set of finite-lattices, U, with A closed under the operation of intersection of finite-lattices. 
For the square lattice, this general relation has the specific form: 

where Z,, is the partition function of a rectangle of dimensions q x r sites. For low- 
temperature expansions, the Z,, are to be evaluated with a surrounding layer of fully 
ordered sites. The weights W(q ,  r )  depend on the set, A ,  over which the product is taken. 
In approximations ( l la) , ( l lb)  an appropriate choice of weights will give Z as a series 
correct up to, but not including, the order of the first connected graph that will not fit into 
any of the rectangles of set A (Enting 1978a). 

For low-temperature Potts model series, the appropriate finite-lattices are rectangles of 
4 x r sites, surrounded by a boundary of sites fixed in state ‘0’. Inspection of the low- 
temperature expansion of the Pots model shows that the limiting graphs are trees that do not 
double back in any direction: all lines drawn perpendicular to bonds of the lattice intersect 
such trees at most once. Such a tree can span a rectangle of size q X T  with q + r - 1 
sites and q + r - 2 bonds in the tree and will give powers of 2(q + r )  or more in the Potts 
model low-temperature variable, z. If one includes all rectangles such that 4 + r < k then 
the series are correct to za+I. We denote the set of rectangles with q + r < k by A(k).  

The combinatorial factors from Enting (1978b) give 

where 

m = 1 
q(1) = -2 

a(2) = 1 
?(k )  = 0 otherwise. 
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This implies 
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W ( w , t )  = 1 for w + e  = k 
=-3 f o r w + L = k - 1  
= 3  for w + e  = k - 2  
= -1 for w + P. = k - 3 
= o  otherwise. 

In actual computation it is convenient to exploit the symmetry and consider only w ,< e. 
We define B ( k )  = {[q, r ]  : q + r ,< k;q < r ] .  The expansion becomes 

with 

Therefore we choose a maximum width U,, and work with e+ w < Zw,, + 1. This gives 
series correct to Z ~ " , + ~ .  

The partition functions are constructed by using a transfer-matrix formalism to build up 
e columns of length w. As in all of the most recent applications of the finite-lattice method, 
we used the approach of building up the finite-lattices one site at a time. The computational 
complexity of the calculation is determined by the largest value of w that is required. 

Storage is required for vectors giving the partial generating functions for all possible 
configurations of sites across a lattice. Without any simplification, such a vector will have 
q" elements for a rectangle of width w .  Each element must have sufficient storage for 
a series truncated at the requisite order (i.e. 4(k i 1) temperature terms times three field 
terms in the present case). Building up the lattice one site at a time means that the 'transfer 
matrix' is extremely sparse and the non-zero elements of the matrix can be calculated as 
required rather than having to be stored. The energies defined above only single out the '0' 
state and so the equivalence of the other states can be used to reduce the size of the vectors 
to approximately q w / ( q  - I)!. 

The precise size, R(w, q )  of vectors required to treat a lattice w sites across is given in 
terms of rum the number of  ways of colouring w sites with colours 0 to q - 1, treating all 
permutations of colours 1 to q - 1 as equivalent. That is 

with rol = rjl = 1 and the general relation 

rim = rj-l,,,, i mrj-l,m. (176) 

The series coefficients A", m, and c. for q = 2 to 4 = 10 are listed in tables A1-A9 
in the appendix. For q = 2 the coefficients A, and m, are known from the exact solutions. 
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The series c, for q = 2 corrects two minor errors in the last two coefficients c a  and c 4  
obtained by Baxter and Enting (1979) using the comer-transfer-matrix technique. (The error 
in the work of Baxter and Enting arose from insufficient precision in the summation of their 
high-field polynomials-a full-precision summation of their published coefficients for the 
expansion (in powers of U = z2  and p) gives the results obtained here.) 

Although the computer program used here is restricted to integer q 2 2, the Potts 
model can be generalized to non-integer q (Fortuin and Kasteleyn 1972). A number of 
interesting special cases occur-in particular the limit q + 1 (on any lattice) gives the 
statistics of the bond percolation problem (Fortuin and Kasteleyn 1972, Wu 1978). This 
connection has been exploited in series derivations (Enting 1986). The finite-lattice method 
is applicable to general q and indeed one of the earliest applications of the method was in 
calculating the limit of chromatic polynomials which correspond to the T + 0 limit of the 
antiferromagnetic Potts model, expressed as a function of q (Kim and Enting 1979). 

3. Analysis of series 

For a second-order phase transition, quantities such as the order parameter vanish at T,, 
while quantities such as the susceptibility and specific heat diverge to infinity. For a first- 
order phase transition, all these quantities are expected to attain a finite, non-zero value 
at Tc, with finite slope at Tc. However, little is known rigorously about the nature of 
the transition. Among the possibilities are: (i) Finite specific heats and susceptibilities 
allowing analytic continuation of the thermodynamic quantities beyond the transition point 
into a metastable region with a singularity T: z Tc on a ‘pseudo-spinodal‘ line and 
effective ‘critical exponents’ at c. (ii) Finite specific heats and susceptibilities with a 
weak, essential singularity at Tc. Even with an essential singularity it may be possible to 
define the thermodynamic functions in the metastable region by analytic continuation in 
the complex plane passing around the singularity. (iii) Divergences in specific heats and 
susceptibilities (or their derivatives) at Tc. A previous attempt to use. series expansions to 
search for an essential singularity gave inconclusive results (Enting and Baxter 1980). Kim 
and Joseph (1975) presented evidence of ‘possible diverging fluctuations at the first-order 
transition’. However, none of our results seem to indicate any sort of singularity at the 
first-order transitions. 

In analysing series expansions around the origin by Dlog Pad6 approximants or, more 
generally, differential approximants, poles and residues of the approximants will provide 
estimators of T, and the critical exponent in the case of a second-order phase transition, 
while in the case of a first-order transition, the approximant will furnish an effective analytic 
continuation, and provide estimators of T,* and some effective exponent. If Tc is exactly 
known, as it is for the two-dimensional Potts models, this observation provides an effective 
means to distinguish between the two types of phase transitions. We show this in table 4, 
where we give the Dlog Pad6 approximants to the magnetization series for the q = 3 Potts 
model, the q = 5 Potts model and the q = 10 Potts model. These are representative of a 
second-order transition, a weak first-order transition, and a first-order transition, respectively. 
For the q = 3 case, we find T:/Tc = 0.99990 and ,S % 0.109, compared to the exact result 

temperature, while the critical exponent is correct to the quoted accuracy (the true value is 
4 exactly). For the q = 5 Potts model, we find T,*IT, = 1.00064 and ,S FX 0.077, so that the 
apparent critical temperature is more than 0.06% above the true critical temperature., while 
the ‘critical exponent’ is rather erratically estimated as % 0.077 . For the q = 10 Potts 

b = ’  ~, so that the apparent critical temperature is less than 0.01% below the true critical 
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Table 4. Singnlarities estimated from Pad6 approximants to spontaneous magnetization of the 
Pot& model for q =3,5 and 10. 

N [ N  - [/NI WIN] tN + l/Nl 
(a) 3-state Pons model spontaneous magnetization: 4 = 0.366025.. . , ,B = 0.1 111 . . . 
17 0.36595 (0.1078) 0.36615 (0.1155) 0.36591 (0.1074)‘ 
18 0.365 93 (0,1076)’ 0.36583 (0.1074). 0.36594 (0.1078) 
19 0.36598 (0.1084) 0.36599 ~ (0.1086) 0.365 99 (0.1086) 
20 0.36599 (0.1086) 0.16599 (o.io86) 0.36599 (0.1086) 
21 0.365 99 (0.1086) 
(b) 5-state Pous model spontaneous magnetization: ZF = 0.309016.. . 
I5 0.309 19 (0.0768) 0.309 15 (0.0763)’ 0.309 17 (0.0766)’ 
16 0.30921 (0.0772) 0.30921 (0.0772) 0.30922 (0.0772) 
17 0.30921 (0.0772)’ 0.30921 (0.0772)’ 0.30922 (0.0772)’ 
18 0.30921 (0.0772)’ 0.30921 (0,0772)’ 0.30920 (0.0769)’ 
19 0.30921 (0.0772)’ 
(e) 10-state Pons model spontaneous magnetidon: zc = 0.240253.. . 
11 0.24280 (0.0436) 0,241 24 (0.0346)’ 0.24288 (0,0441)’ 
12 0.24288 (0.0441). 0.24278 (0.0433)’ 0.24269 (0.0428)’ 
13 0.24269 (0.0428). 0.24271 (0.0430)’ 0.24267 (0,0427)‘ 
14 0.24268 (0,0427)’ 0.24275 (0.0432)’ 0.24276 (0.0433)’ 
15 0.24276 (0.0433)- 

model, we find T:/Tc = 1.0104 and @ % 0.047, so that the apparent critical temperature is 
more than 1.0% above the me critical temperature, while the ‘critical exponent’ is rather 
erratically estimated as w 0.05. (We,,emphasize that this so-called ‘critical exponent’ has 
no physical meaning.) 

This method of analysis alone appears to provide a reliable indicator of the order of a 
phase transition when the critical temperature is known exactly. For a exactly second-order 
transition, the estimates of the critical temperature lie very slightly below T,. (The q = 2 or 
king case for which the magnetization can be represented exactly by low-order Dlog Pad6 
approximants is an exception.) Even for the marginal case of q = 4 (the critical dimension, 
where the model undergoes a second-order phase transition, but with logarithmic corrections 
to the critical exponents), we find T:/T, = 0.999 75, and @ = 0.0906, which is satisfyingly 
close to the exact value of &. For the weak first-order 4 = 5 case it is already clear that 
T;/Tc is significantly bigger than 1, while the ‘exponent’ estimates are much more erratic 
than for the 4 6 4 case. 

The other numerical approach to distinguish between a first- and second-order phase 
transition is to compare numerical approximations to the free energy and internal energy 
in the high- and low-temperature regimes. (On the square lattice, we obtain the high- 
temperature series by duality from the low-temperature series.) In figure 1 we show the 
plots of the free energy for q = 3 , 5  and 10. For q = 3 the curve appears smooth, with no 
gradient discontinuities. At q = 5, a discontinuity in the gradient at T, is already apparent, 
while at q = 10 the discontinuity in the gradient is manifest. In figure 2 we show @e 
corresponding curves for the internal energy. The non-zero latent heat characteristic of 
a first-order transition is already manifest at q = 5. The numerical approximations used 
in these figures are the approximants formed by the method of differential approximants 
(DA) (Guttmann 1989, pp 83ff). This method generalizes Pad6 approximants by fitting an 
ordinary differential equation of the form 



Square lattice Potts model 

0.0 

A 
M-0.1 L 
W 
c 
W 
W 
0 

t -0.2 
L 

L 
t 

- 0 . 3 t , '  " ~ ~ ~ " ~ ~ ~ ~ ~ " ~ ' ' ~  ' " ' " ' " I "  ' I  ' 
--0.10 -0.05 -0.00 0.05 0.  

k(T-T,)/AE 

1511 
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Figure 1. Dimensionless free Mergy, F / A E ,  of the square lattice Ports model forq = 3 (solid 
curve). q = 5 (short dashes) and q = 10 (long dashes) illustrating the change from continuous 
to first-arder transitions. Curves are the average of typically I O  differential approximants. 

1.4 t 
$1.2 - 

; 1.0 - 
i 

U 
0.8 

m 
E0.6 - 
U 
2 0 . 4  - 

- - 

0.0 
-0.20 :0 

Figure 2. Dimensionless intemal energy. U J A E ,  of the square lattice Polts model for q = 3 
(solid curve), q = 5 (short dashes) and q = IO (long dashes). Each curve is the average of 
typically 10 differential approximants. 

m 
Qi(x)D'f(x) = P ( x )  

i d  

(where D' = ai/&') to the available series terms. Here Q t ( x )  = ~ ~ o q k i x i  and 
P(x)  = x z o p i x i  are polynomials. We chose qmo = 1, so that the origin is not a regular 
singular point. This allows numerical integration of the differential equation starting at x = 0 
in order to obtain the values plotted in the figures. For magnetization series, homogeneous 
DA's (P = 0) are often most useful. (For m = 1 this corresponds to logarithmic derivative 
Pad6 approximants.) The degrees of Q k  and P are chosen to use all (or most) of the 
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available series terms. In principle, any order of differential equations can be used, but first 
order (m = 1) was mostly used in  the current work. Finding the coefficients of Q k  and P 
reduces to solving a system of linear equations, but this system is often ill-conditioned, so 
that care must be taken in its solution. 

This differential equation is then integrated numerically to obtain estimates of the desired 
physical quantities. In all cases a number (typically 10) of DA’s using all the available 
coefficients was integrated. These were then averaged to obtain the means and standard 
deviations shown in the tables and graphs below. All calculations were performed in 
quadruple precision (approximately 34 decimal places), so that all series terms could be 
represented without loss of precision. 

We performed the numerical integration with &I extrapolation method of the Bulirsch- 
Stoer type, as described by Hairer (1987, section II.9). The integrations were performed in 
tenns of the series expansion variable, but results are expressed in terms of k T / A E .  

The integrations described above clearly allow us to qualitatively distinguish between 
a first- and second-order phase transition. A much more stringent test is to qmitativeiy 
reproduce the magnetization gap AM and the latent heat AU for 4 > 5. These have been 
calculated by Baxter (1973, 1982). These exact results are shown in table 2. The agreement 
between numerical and exact results is, as might be expected, best for q close to 10, and 
worst near 4 = 4. Further details of the calculations are given in the subsections below. 

K M Briggs et a1 

We now discuss our numerical results in greater detail. ’ 

3.1. Free energy and internal energy 

We integrated the equations defining approximants to the free energy and the internal energy 
series from T = 0 and T = m to & in order to determine the critical value of the free- 
energy and the latent heat (for 4 =- 4) from the discontinuity at T,. For low temperatures, 
F was derived from approximants to lnA in powers of z ,  while for high temperatures 
we use approximants to F/kT - 2AE/kT expanded in powers of U. For the energy, 
high-temperature and low-temperature approximants were constructed from the respective 
expansions (in powers of U and z )  to U / A E  - 2. For 4 < 4, table 1 compares the exact 
values of F /AE to the series estimates. Eor 4 > 5 table 5 gives the series estimates for 
F,/AE and A U / A E ,  which should be compared to the exact values in table 2. The critical 
value of the free energy is obtained very accurately for all values of q .  As expected from 
the known exact results (Baxter 1973), U was found to be continuous at Tc for 4 < 4. From 
the tables, it can be seen that the exact results for the latent heat are reproduced to within a 
few percent, except at 4 = 5. However, at 4 = 5 the latent heat is found to be larger than 
the exact value, which makes the order of the phase transition more obvious. 

Table 5. Square laltice Pons model, AM- AU and F, resulls fmm series analysis. Compare to 
exact values in table 2 Free energies are defined relative lo a ground-state energy of zem. 

CI k Z / A E  AM AUlAE F d A E  

5 0,85152841 0.643 * 0.002 , 0,085 f 0.015 -0.05204 
6 0.80760682 0.728 * 0.010 0.200 & 0.010 -0,04758 
7 0.77305889 0.775.& 0.010 0375 0.027 -0.04309 
8 0.74490446 0.817 f 0.003 0.499 & 0.007 -0.03951 
9 0.721 34751 0.846 f 0.002 0592 & 0.014 -0.03598 

10 0.701 7.31 60 0.862 f 0.030 0.706 f 0.005 -0.03320 
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The behaviour of the free energy and internal energy as functions of temperature is 
shown in figures 1, 2 and 3. Since our primary objective is to test techniques that are 
applicable in three dimensions where T, is unknown, figure 3 which shows details of 
the transition region for q = 5 is of particular interest. The figure shows individual 
approximants, indicating the spread that occurs in the free energy itself and the precision 
with which the transition could be located if T, were not known. 

-0.0525 ' I  ' " " ' ' " ' ' " " " ' I  " " " ' ' '  I '  " ' ' ' " L 

-0.0004 -0.0002 0.0000 0.0002 0.0004 

Figure 3. Detail of the approximans to ule Potts model free energy ( F J A E )  around the 
transition for q = 5. The plot includes seven high-temperature approximants (shown as 
dashed) and 13 low-temperature approximans (shown as solid), although not all of these can 
be distinguished on tYs scale. 

3.2. Magnetization 

We integrated the approximants to the magnetization series M ( z )  from T = 0 to T = T, in 
order to determine the discontinuity AM at T,. As expected from the known exact results 
(Baxter 1982). Y vanished at Z for q < 4. Comparing tables 2 and 5, it can be seen that 
the exact results are reproduced to within a few percent, except at q = 5. At q = 5 the 
error in the magnetization discontinuity is some 27%, falling to less than 1.5% at q = 10. 
A plot of the magnetization for several values of q is shown in figure 4. 

3.3. Susceptibility and specific heat 

The susceptibility and specific heat properties are not known in general. Certainly for 
q Q 4 they are known to diverge at Tc, but for q 2 5 the behaviour is less well understood. 
Nevertheless, it is expected that the susceptibility and specific heat should remain finite at 
Tc, though this has not been proved. In order to study these rapidly increasing quantities, 
various sequence transformation were used to generate the most appropriate series, and 
hence DA, for numerical integration. In general, if a quantity f ( x )  behaves at the origin of 
integration like xk, it is usually desirable to remove this term and study f ( x ) / x k  instead. 
In addition, if a function is increasing rapidly, but not necessarily diverging, studying the 
reciprocal of the function frequently provides better converged approximants. These two 

~ ~ 
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Figure 4. Spontaneous magnetization of the square lattice Pous model for q =, 3, 5 and IO. 
Each curve is the average of typically 10 differential approximants. 

transformations are often used together so that, for example, we worked with the series for 
z4 /x ( z )  (where x is the susceptibility), rather than ~ ( z )  itself. 

In table 6 we show the results for the specific heat and susceptibility at the critical 
temperature, when approached from both the high- and low-temperature side. We observe a 
monotonic decrease in the value of the specific heat at T, with increasing q. For q = 5 and 
q = 6 the integration is too unreliable to quote a result. The numerical evidence gives no 
suggestion of asymmetry in the specific heat values above and beIow Tc, though our error 
bars are too large to give a useful test of symmetry. 

Table 6. Square lattice Pons model, susceptibility and specific h a t  results from series analysis. 

6 0.80760682 365 10 - - 
7 0.77305889 1554 93*3 250 + 160 
8 0.74490446 1.3 t 0.6 72 * 20 75kiO 
9 0.72134751 3.4&0.9 4 0 5 5  4254 

10 0.701 231 60 2.4450.09 31.8&2.8 33,+3 

In connection with the error bars, the value for Co(T,-) for q = I seems anomalously 
low and yet, as for all the other cases, the range reflects the spread of approximants that were 
fitted. This anomaly serves to emphasize the fact that the ranges are obtained empirically, 
rather than being based on any statistical theory, and in addition reflect a relatively small 
number of cases. 

Recently Billoire et al (1992) published a Monte Carlo study of the q = 10 Potts model 
specific heat. They obtained a value of  12.3 for Co(T,) compared to OUT estimate of 32. 
However, re-analysis (Billoire, private communication) indicates that the published value is 
a serious underestimate, due to the fact that his system was not large enough to eliminate 
finite size effects. However, Billoire is able to estimate the difference between the specific 
heats on the ordered and disordered side of the critical temperature and finds a value of 
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0.447 at q = 10 and 0.223 at q = 7 .  Such small differences, if they exist, cannot be 
resolved by ow numerical estimates. 

For the susceptibility we also observe the same monotonic trend of decreasing values 
at T, with increasing values of q. As far as we are aware, this is the first study of this 
quantity. 

4. Discussion of results 

We have shown how the finite-lattice method may be used to extend Potts model series, and 
have used the method to substantially extend a number of series for a range of q values. 
The series could all be extended by several further terms (typically four) without excessive 
demand on computing resources, but we did not consider this necessary for our pnrposes. 
We have used the series, combined with appropriate numerical techniques, to show how 
a first-order phase transition can be distinguished from a second-order transition. In this 
way we find extremely strong evidence for the known first-order transition for q > 5. The 
methods developed in this paper are used in a subsequent paper to investigate the nature of 
the phase transition for the threestate three-dimensional Potts model. 

Acknowledgments 

Financial support from the Australian Research Council is acknowledged. IGE wishes to 
thank Doochul Kim for pointing out the inconsistency in the series published by Baxter 
and Enting. The authors wish to thank John O'Brien, Robert Bursill and Debbie Wood for 
assistance with some of the numerical work. 

Appendix. The series 

Tables A1 to A9 list the series expansions that we have calculated. 

Table A l .  q = 2 square lanice Pot& model. 

Partition function Magnetization Susceptibility 
0 1 1 0 
2 0 0 0 
4 1 -2 1 
6 2 -8 8 
8 5 -34 60 

10 14 - I52 416 
12 44 -714 2791 
14 152 -3472 18296 
16 566 -17318 118016 
18 2234 -88048 752008 
20 9 228 -454378 4746341 
22 39520 -2373048 29727472 
24 174271 -12515634 185016612 
26 787246 -66551 016 1145415208 
28 3628992 -356345666 7 059265 827 
30 17019374 -1919453984 43~338407712 
32 81 011 889 -10 35'2 792766 265 I68 691 392 
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lhble Al. (continued) 

34 390633382 -56 527 200 992 1617 656 173 824 
36 1905 134695 -308691 183938 9842665771 649 

40 46653815395 ~ -9301 374 102034 361933688520940 
42 233788460256 -51 286672777080 2188328005246304 
44 1 180 111379 105 -283 527 126 282794 13 208464812265 559 
46 5996452414310 -1 571 151 822 119216 79 600 379 336 505 560 
48 30653752894948 -8725 364469 143718 479025509574159232 
50 157568531 636534 . 4552769461088336 2878946431 929 191 656 
52 814062277383 328 -270 670485377401 738 17281 629 934637476 365 
54 4225485 275503 702 -1 511 484O24051198680 103 621 922312364296 112 
56 22027957435784967 -U53 722260 102884930 620682823263 814 178484 

38 9385 453 576 - 1 691 769 619 240 5974a291677832 

Table A2. q = 3 square lattice PON model. 

Partition function Magnetization Sus c e ptib i I i ly 

0 1 1 0 
1 0 0 0 
2 0 0 0 
3 0 0 0 
4 2 -3 2 
5 0 0 0 
6 4 -12 16 
7 4 -12 16 
8 6 -36 1Ml 
9 24 -108 216 

10 24 -210 844 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

68 
190 
192 
904 

1420 
3 106 
9 940 

14572 
49268 

102 886 
225 004 
652 940 

1301 256 
3513806 
8591792 

19326248 
52781 148 

120 709 472 
306339824 

1852672272 
779 682 608 

-480 
-1746 
-2340 

-10566 
-19500 
-53976 

-152604 
-329424 
-971 304 

-2403 291 
-5955 576 

-16 858 584 
-40337376 

-110301 321 
-287061 696 
-730 223 208 

-1985703720 
-5070CQl716 

,-I3 446 444 720 
-35 650 214 232 
-92442918828 

1552 
7 844 

12112 
60268 

118944 
424 072 

1081 392 
3201728 
8670688 

25713154 
67206560 

203 077 760 
532 881 432 

IS58 159918 
4 250 639 632 

11 956293 152 
33 296 697 848 
92820406 096 

257 249 275 776 
721 023458656 

I986080278600 
32 4847 112666 -247542929499 5561 045323298 
33 11 876028924 -648347258796 15359 165767512 
34 29 820747 120 -1713 912378552 42717426 328 784 
35 76592341 404 -4559593914288 118457421 095792 
36 189 184240720 -11 991 311 519034 328 170466563836 
37 486960149980 -31943 103715128 909829346983664 
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Table At. (continued) 

38 1230269248240 -84599939924118 2520622606225868 
39 
40 
41 
42 
43 
44 
45 
46 

3 11 1387440 800 
8008990 142050 

20253094484576 
52022 867 385 004 

133290716 I87904 
340 509 251 651 724 
878668731 837260 

2 252 826 675 055 124 

-224265087762 144 
-59751 1883 594619 

-1 584231404 110704 
-4 220 295 103 426 356 

-1 1 234 571 367 790 256 
-29892611571334848 
-79763 126301078204 

-212 500 082474434 470 

6973368 153491 880 
19322697243220 158 
53 409977 638363 032 

147 820297067842856 
408 655 295 665 071 080 

1 129521 213462962520 
3 122011 I16 I23891 464 
8 624 059 746 484047 468 

47 5 806881 993986032 -567062477783225 940 23820051 913808354000 

Table A3. q = 4 square lanice Potts model. 

Partition function Mametization SusceDtibiliN 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

1 
0 
0 
0 
3 
0 
6 

12 
3 

72 
66 

144 
822 
480 

3 624 
8508 

10482 
65 856 
94794 

289452 
1008420 
1561 032 
6503532 

15224016 
34976979 

125 988 144 
263 308 986 

1 
0 
0 
0 

-4 
0 

-16 
-32 
-28 

-288 
-400 

-1024 
-5268 
-5 920 

-32 160 
-82720 

-163020 
-737568 

-1 482784 
-4644992 

-15095436 
-33307648 

-117747 376 
-312435552 
-842 726 356 

-2747491616 
-7020371 952 

0 
0 
0 
0 
3 
0 

24 
48 

120 
648 

1608 
4 I76 

21 093 
38064 

175 M)8 
494616 

1 365 726 
5 077 200 

13549704 
43 359768 

140590629 
389 348 688 

1296882504 
3 834279072 

11 499 I26642 
36 680 416 368 

107 193 301 920 
27 805 096 764 -21348043296 333 178056720 
28 2319752694 -62732977996 1019415082779 
29 5 402283396 -169 814283 264 3037827 148 632 
30 17415097542 -524175339 168 9438 120599520 
31 44310604860 -1 465377774880 28340399493 I 4 4  
32 120262240257 -4227 843 277 380 86034549347280 
33 361 259402196 -12642298828704 ~ 263586587279472 
34 915351056 190 -35439363555 136 791 349060376776 
35 2690 038 490904 -105 238 706 11 1 616 2417035 981 7376% 
36 7502 832907557 -305746580682940 7324 I76466760445 
37 20120 I70776144 -877576741412064 22116375075991056 
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Table A3. (continued) 

38 59 297 057 120 916 -2 604 469 I34 327 440 67378910515598736 
39 160 763 1 I8088 260 -7498478213 381 792 203361 542589030720 
40 453 982230 850713 -21 932701 743 507244 616448061 791 922708 
41 1302433413699684 -64438624831 555744 1869466917535240656 
42 3 570759048806208 -186505497431 699280 5644507206242675400 
43 10294 158055979 004 -549250323031 345 792 17 116 665818 567 515608 

Table A4. q = 5 square lattice Potu model. 

Partition function Magn&ation Susceptibility 

0 1 I 0 
1 0 0 0 
2 0 0 0 
3 0 0 0 
4 4 -5 4 
5 0 0 0 
6 8 -20 32 
7 24 -60 96 
8 -4 -10 120 
9 144 -540 1296 

10 1 76 -830 3 032 
11 168 -1440 7392 
12 2348 -12930 48856 
13 1200 -12660 86496 
14 8792 -72250 405368 
15 34056 -266220 1473600 
16 21 092 -364490 3423800 
17 249 768 -2407020 16113120 
18 466952 -5493 880 45751 360 
19 894 840 -14148000 141 321 696 
20 5545356 -66328975 563442380 
21 7 573 416 - 133 669 680 1532848896 
22 31825552 -507900420 5 523 490 864 
23 109 857 648 -1701 343560 18731 006352 
24 183 834532 -4003 389435 55 057 588 668 
25 911 149824 -16157898840 201 014668032 
26 2 193242320 -44 696 695 560 626745614848 
27 5 622993 528 - 13 1 231 068 680 2011 978 174032 
28 22900219 536 -476230251 170 6 990 596535 720 
29 49 840002048 -I  272406453 680 21530011 859136 
30 170 996310488 -4263 523 739 780 72 383 200 786 800 
31 547 847760000 -13708308759 180 238 951 933 550064 
32 1328084520588 -38993908456 195 754059402 907 804 
33 4859021 632872 -133683456488820 2546 174053 634736 
34 I3419413 642968 ~ -401 454 864 043 460 8 178788230326672 
3s 26521 657626 107232 
36 131314151349976 -4088698 146399590 88 159797282578792 
37 351 804517490 808 I- 12 164467 726392600 282022546 158 446 016 
38 I124247366814936 -39182468233883110 927533183411394600 
39 3501 627546572496 -124429743346539840 3032466102 194828496 

38 470 066 484 088 - 1 235 148 320 717 160 
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Table A5. p = 6 square lattice Pot- model. 

Partaim function Magnetization Susceptibility 

0 1 1 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

0 
0 
0 
5 
0 

10 
40 

-15 
240 
390 
80 

5 200 
3 120 
160W 

100 360 
35.830 

676 WO 
1760530 
1 919 240 

20 588 740 
31455520 

102 369320 
534753600 
750 136775 

4 129522880 
13033586990 
25901 162520 

139 208616 380 
331 986591 080 

1007597 125 790 
4245621 181560 
9 7 16 604 610 065 

37562 154772200 
1x381 210315310 
327356630630 880 

1307950724960515 
3 808 355 804296960 

11 776254793724920 

0 
0 
0 

-6 
0 

-24 
-96 

18 
-864 

-1608 
-1536 

-26478 
-26208 

-131472 
-695 136 
-705282 

-6069600 
~ ~ -17145840 

-33196224 
-219 104358 
-454883 520 

-1 589271 912 
-7015071 072 

-14801 255718 
-66670704288 

-217598415 I92 
-571905903072 

~-2509604877582 
-7 057 292 732 736 

-23 164508689248 
-88 855085448096 

-248 631 471 063 042 
-915400 373 994912 

-3099289015999584 
-9 366267243 722 112 

-34832974106130846 
-1 IO265 822 998 373 408 
-362663 928 629 146008 

0 
0 
0 
5 
0 

40 
160 
100 

2 160 
5 440 

10720 
97 835 

172960 
781 960 

3 635 280 
7301 860 

40 513 440 
130258520 
362286640 

1769583805 
4 908 084 320 

17743 365920 
71 015 805 120 

202223457 160 
808396021 120 

2788938475 160 
8810020871 360 

34575 265 840675 
111 570542543280 
386492454099 760 

1424843 663 011 600 
4599792447092 840 

16638531 775796 160 
58 025 774 058 205 MO 

193486559359486 160 
700334584661741705 

2373578442 196407200 
8 176367783196681 800 

39 43485 616464063 4W -1 292915 644379929 056 29029 320310487 709600 

Table A6. q = 7 square lattice Potts model. 

Partition function Magnetization Susceptibility 

0 1 1 0 
1 0 0 0 
2 0 0 0 
3 0 0 0 
4 6 -7 6 
5 0 0 0 
6 I2 -28 48 
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Table A6. (continued) 

7 
8 
9 

10 
I1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

60 
-30 
360 
744 

-180 
9 834 
7440 

23 952 
240 180 
65 046 

1478940 
5278404 
3298380 

59010978 
110 649780 
253716060 

I946334840 
2709355266 

13 823742000 
58205917 656 
96209517780 

603 180202992 
1719615462960 
4359 818416 824 

23 080 980 564 720 
55306 170014214 

201 109899966 180 
826406173630 152 

-140 
56 

-1 260 
-2 842 
-1 120 

-47 754 
-51 940 

-207 102 
-1 547 980 
-1 295 028 

-12844 860 
-45718288 
-66714200 

-588028 203 
-1 360 197 160 
-4028581 648 

-23 146611 600 
-47264561 869 

-214532828 720 
-851 529468216 

-2020426505 160 
-10061684149216 
-31538686 100880 
-96228336284304 

-433388885935 180 
-1 26332722 187651 
-4603433032789 500 

-17 921 451 461 635 792 

240 
60 

3 240 
9 156 

13680 
175 116 
319920 

1329 156 
7815840 

141156% 
86758 800 

323797728 
798 016 320 

4634018 046 
I3 634236320 
47009 324592 

221 905374 120 
625484761 002 

2603227959 120 
10 144975 819968 
31 145410317960 

134214 946 004 952 
464 836718946240 

16038577ZS501712 
6 571 731 067 255 800 

21 917 612 779 277 742 
82056 490 326 269 640 

313584713235621 024 
35 2050391 032558740 -53 354558614082 880 1065 067 369034097 360 

Table A7. q = 8 square lattice Rotts model. 

Partition function Mametization Susceotibilitv 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
0 
0 
0 
7 
0 

I4 
84 

-49 
504 

1274 

1 
0 
0 
0 

-8 
0 

-32 
-192 

104 
-1728 
-4640 

0 
0 
0 
0 
7 
0 

56 
336 

0 
4536 

14504 
I I  -672 0 15 792 
12 16730 -78 696 288 169 
13 15792 -96960 556 752 
14 30464 -293 056 2062088 
15 497 700 -3 061 440 15132264 
16 I35 506 -2341976 25582802 
17 2802240 -24026304 165 495 792 
18 13293602 -106819264 720185368 
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Table A7. (continued) 

19 5 007 828 
20 141 712956 
21 330 138984 
22 530780740 
23 5749786896 
24 8786258971 
25 37764443 472 
26 207473441098 

1521 

-122471424 
-1 357292536 
-3611 133696 
-8864133984 

-64 316 947 776 - 135 447 363 816 
-579 I46076096 

-2784296946528 

1588846728 
10 588 862 669 
33 856668720 

108773 186200 
596266427232 

1 709093 729238 
7 126592218032 

31 462 130 162512 
27 316 373 962 548 -6222589 183680 94727643465 168 
28 2063 246723 202 -32959913315 576 433862737592571 
29 7 17 I 329 549 804 - I18042 425 288960 1637231 047784 136 
30 5 555 976 600 I92 816 
31 96599 146653492 - I696556998769088 248595036358W680 
32 258 I18001 999361 -5  212673 379084904 86979393078997048 
33 842 597 I12773724 - 18588 152419905 216 328938272280954672 
34 4 144519614837 910 -82 38765861263091? 1373037610865 700024 

15 593 869 260998 -333 304465 512 5 I2 

35 10425 I82606 664 504 -248 254 672744 05 1 968 4 775 687 621 042 306 472 

Table AS. q = 9 square lattice Pons model. 

Parlition function Magnetization Susceptibilitv 

1 0 0 1 
1 0 
2 0 
3 0 
4 8 
5 0 

8 - 72 
9 672 

10 2016 
1 1 ~  -1456 
12 26392 
13 30240 
14 32464 
15 929488 
16 297 352 
17 4789456 
18 29 374 864 
19 7376432 
20 299 855 320 
21 855405 712 
22 993563072 
23 14579082 336 
24 25470896744 
25 89 577 509 504 
26 621970314656 
27 950903 499504 
28 5 956796021984 
29 24987280793216 

0 
0 
0 

-9 
0 

-36 
-252 

162 
-2268 
-7110 

2016 
-121338 
-1701W 
-379 890 

-5535 180 
-4 188 870 

-41 053 068 
-224389944 
-213735312 

-2801 005551 
-8621268768 

-17694788796 
-156613 OS7 272 
-353 319 727 31 1 

-1 377 018275 976 
-7875911 823 192 

-17325 165946536~ 
-92844355 601 646 

-380787988 636944 

0 
0 
0 
8 
0 

64 
448 
-80 

6048 
21 808 
16576 
444 848 
919744 

2987248 
27006336 
44211856 

289598400 
1462 179584 
2 947217728 

21805200184 
76 569 774 848 

228 101 077 664 
1422679507872 
4 234 628 561 272 

17 279 449 575 808 
85777377714560 

257362505607200 
1218813810751024 
5 033 799 620 045 952 

30 49220523168272 -1014469914963708 16823743332996640 
31 333054308294400 -5 601585 935 358060 80496531 779269984 
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Table A9. q = 10 square lanice Potk model. 

Panition function Magnetization Susceptibilily 

0 1~ 1 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
I9 
20 
21 
22 
23 
24 
25 

0 
0 
0 
9 
0 

18 
144 
-99 
864 

3 006 
-2592 
39 348 
53 280 
25 992 

1605456 
631 062 

7576 128 
58741002 
11 555 280 

577400796~.. 
I976057856 
1734448752 

32942 677 248 
66351 732687 

192 109371 264 

0 
0 
0 

-10 
0 

-40 
-320 

230 
-2 880 
-1 036 

5 120 
-177810 
-281 920 
-454800 

-9336640 
-7348830 

-65490240 
-432882160 
-362940800 

-5306650050 
-18788 133760 
-32994025240 

-344082515 520 
-846585038 170 

-2979703762880 

0 
0 
0 
9 
0 

72 
576 

-180 
7 776 

31 392 
15552 

653 391 
1 452 096 
4102488 

45 188 640 
73492200 

474281 280 
2754369000 
5 188 189536 

41404785 525 
159998 233 536 
444259126224 

3 087 795 261 3 12 
9670634655948 

38 172808 778 I12 
26 I631 012967 630 -19 830 863 413320 210547287?05 128 
27 2631 716943408 -44403 893943360 639 171 550340352 
28 15171912275256 -233I05484042490 3068237 140062435 
29 75277 805632848 - I  085 356 198700 160 13 83321 1331 827296 
30 141 748393419918 -2799 I74780003360 45883584616400640 
31 991 716 1 18694 640 - 16218 543 098061 760 230335 082028 303 262 
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