Series studies of the Potts model. II. Bulk series for the square lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 271503
(http://iopscience.iop.org/0305-4470/27/5/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:49

Please note that terms and conditions apply.

Series studies of the Potts model: II. Bulk series for the square lattice

K M Briggs $\dagger \S$, I G Enting \ddagger and A J Gutmann \dagger
\dagger Department of Mathematics, University of Melbourne, Parkville, Vic., Australia 3052
\ddagger CSIRO, Division of Atmospheric Research, Private Bag 1, Mordialloc, Vic., Australia 3195

Received 19 April 1993

Abstract

The finite-lattice method of series expansion has been used to extend low-temperature series for the partition function, order parameter and susceptibility of the q-state Potts model to order z^{56} (i.e. u^{28}), $z^{47}, z^{43}, z^{39}, z^{39}, z^{39}, z^{35}, z^{31}$ and z^{31} for $q=2,3,4, \ldots, 9$ and 10 respectively. These series are used to test techniques designed to distinguish first-order transitions from continuous transitions. New numerical values are also obtained for the q-state Potts model with $q>4$.

1. Introduction

This is the second in a series of papers in which we study the critical behaviour of the q state Potts model in both two and three dimensions using series expansions derived from the finite-lattice method. The previous paper (Guttmann and Enting 1993), denoted I hereafter, gave the general expressions used to derive high- and low-temperature expansions for the q-state Potts model. In 1 , series expansions for the $q=2$ (Ising) case on the simple cubic lattice were analysed. The present paper derives and analyses series for the bulk thermodynamic properties for Potts model on the square lattice for integer q ranging from 2 to 10 .

A brief history of the model follows. After the initial paper by Potts (1952), the model attracted little attention for almost two decades. During the 1970s there was greatly renewed interest, with new exact results, series studies and renormalization group calculations as well as applications to phase transitions in surface films. A particular concern at that time was the failure of renormalization group calculations to reproduce the exact results for the order of the transition in two dimensions. A review by Wu (1982) described much of the work on the Potts model.

The main exact results come from Potts (1952) and Baxter (1973, 1982). In particular, Potts (1952) located the critical temperature exactly for the two-dimensional Potts model on a square lattice by duality arguments. He found that $T_{\mathrm{c}}=\Delta E /(k \ln (1+\sqrt{q}))$ and $\bar{U}=\frac{1}{2}\left(U_{c}^{+}+U_{c}^{-}\right)=\Delta E(1-1 / \sqrt{q})$. (The energy is relative to the ground-state energy; other aspects of the notation are defined in section 2 below.)

For $q>4$ the model has a first-order phase transition, and Baxter (1973) obtained the free energy and latent heat in 1973, and subsequently the value of the magnetization at T_{c} (Baxter 1982). The results are listed in tables 1 and 2 with the free energies converted to be consistent with our choice of zero ground-state energy. The free energy, f, defined
by Baxter (1973) is related to the free energy, F, which we define below through the dimensionless form $F / \Delta E=f / \Delta E+2$. Further, Baxter showed that the values of the magnetization at T_{c} were the same for the square, triangular and honeycomb lattices-a consequence of the star-triangle relation. For $q \leqslant 4$ the model has a second-order phase transition. Indeed, for $q=2$ the model is just the usual spin $-\frac{1}{2}$ Ising model, while $q=4$ is the 'marginal' q value, at which the exponents have confluent logarithmic corrections.

Table 1. Exact critical properties for $q \leqslant 4$, from the work of Potts (1952) and Baxter (1973). The internal energies U and free energy F are defined relative to a ground-state energy of zero. Numerical estimates of $F_{\mathrm{c}} / \Delta E$ are also shown.

q	z_{c}	$U_{\mathrm{c}} / \Delta E$	$F_{\mathrm{c}} / \Delta E$	$F_{\mathrm{c}} / \Delta E$ (series)
2	0.414214	0.292893	-0.054826	-0.054825
3	0.366035	0.422650	-0.059780	-0.059777
4	0.333333	0.500000	-0.056708	-0.056722

Table 2. Exact properties at the transition point for $q \geqslant 5$, from the work of Potts (1952) and Baxter (1973, 1982). The energies and free energy are defined relative to a ground-state energy of zero.

q	$k T_{\mathrm{c}} / \Delta E$	ΔM	$\Delta U / \Delta E$	$\dot{U} / \Delta E$	$F_{\mathrm{c}} / \Delta E$
5	0.851528	0.492141	0.052919	0.552786	-0.05205
6	0.807607	0.665181	0.201464	0.591752	-0.04738
7	0.773059	0.749565	0.353277	0.622036	-0.04311
8	0.744904	0.799837	0.486358	0.646447	-0.03935
9	0.721348	0.833261	0.599668	0.666667	-0.03608
10	0.701232	0.857107	0.696049	0.683772	-0.03323

Table 3. Exact critical exponents for two-dimensional Potts models.

q	α	β	γ	δ	ν	η	Δ_{1}
2	0	$1 / 8$	$7 / 4$	15	1	$1 / 4$	$4 / 3$
3	$1 / 3$	$1 / 9$	$13 / 9$	14	$5 / 6$	$4 / 15$	$2 / 3$
4	$2 / 3$	$1 / 12$	$7 / 6$	15	$2 / 3$	$1 / 4$	0

The critical exponents and critical temperature for $q \leqslant 4$ are shown in table 3. The thermal exponent was given by Black and Emery (1981), following a conjecture of den Nijs (1979). Den Nijs (1983) also obtained the magnetic exponent, while Nienhuis (1982) obtained the (thermal) correction-to-scaling exponent Δ_{1}. The results are:

$$
\begin{aligned}
& 2-\alpha=\frac{2}{y_{t}}=\frac{2(2-r)}{3(1-r)} \\
& 1+\frac{1}{\delta}=\frac{2}{y_{h}}=\frac{8(2-r)}{(3-r)(5-r)} \\
& \Delta_{1}=\frac{4 r}{3(1-r)}
\end{aligned}
$$

with

$$
0 \leqslant r \equiv \frac{2}{\pi} \cos ^{-1}(\sqrt{q} / 2) \leqslant 1 \quad \text { for } 0 \leqslant q \leqslant 4
$$

However, for $q>4$ certain properties still remain unknown. These include the value of the specific heat and of the isothermal susceptibility at the critical temperature. Various surface critical exponents and critical values are also unknown.

Of even greater interest is the behaviour of the three-dimensional Potts model. As noted above, for the $q=2$ (Ising) case, the low-temperature series and some high-temperature series have recently been extended in I. For $q=3$, the three-dimensional Potts model is of particular interest as it constrains the order of the deconfinement transition in quantum chromodynamics. The key question is whether the $q=3, d=3$ Potts model transition is first or second order. This is discussed further in the third of our series of papers.

The fact that the critical behaviour is known in the two-dimensional case makes it an ideal 'test-bed' for methods to distinguish first-order from second-order phase transitions. In this paper we have extended the low-temperature (and by duality, the zero-field hightemperature) series for the two-dimensional model for $q=2,3,4, \ldots, 9,10$. By the use of the finite-lattice method (see I and references therein), quite substantial series extensions have been made. By using differential approximants (Guttmann 1989) to integrate the series, we have been able to clearly distinguish between first-order and second-order phase transitions.

The layout of the remainder of the paper is as follows. In the next section we briefly describe the finite-lattice method and the nature of the results we thus obtained. In section 3 we analyse the data. In section 4 we present a discussion of the results.

2. Series expansions from the finite-lattice method

The definitions and notation follow the usage of I. The standard q-state Potts model is defined on a lattice with each site having a 'spin' variable that takes on q possible values (denoted ' 0 ' to $q-1$). An energy $\Delta E>0$ is associated with each pair of interacting sites that are in different spin states, and an energy of 0 applies to pairs of interacting sites in the same state. We consider only the square lattice, with each site interacting only with its four nearest neighbours. Each site not in state ' 0 ' has an additional field energy H.

The thermodynamic quantities can be derived from the partition function Z. We choose the normalization such that the state with all sites in state ' 0 ' has zero energy. This particular normalization of the partition function is commonly denoted Λ.

We work in terms of the expansion variables $z=\exp (-\Delta E / k T), \mu=\exp (-H / k T)$ and the high-temperature variable $v=(1-z) /(1+(q-1) z)$.

For the square lattice, the high-temperature expansion for the partition function takes the form (see I for the general case):

$$
\begin{equation*}
\Lambda=q^{-1}(1+(q-1) z)^{2} \Phi(v)=q(1+(q-1) v)^{-2} \Phi(v) \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\Phi(v)=1+(q-1) v^{4}+\ldots \tag{2}
\end{equation*}
$$

For the low-temperature expansion, we use a modified field variable $x=1-\mu$ and truncate at order x^{2} so that the partition function is expressed as

$$
\begin{equation*}
\Lambda=\Lambda_{0}+x \Lambda_{1}+x^{2} \Lambda_{2}+\ldots \tag{3}
\end{equation*}
$$

The zero-field partition function is expanded as

$$
\begin{equation*}
\Lambda_{0}(z)=\sum_{n} \lambda_{n} z^{n} \tag{4}
\end{equation*}
$$

On the square lattice, the duality relation takes the form

$$
\begin{equation*}
\Lambda_{0}(x)=\Phi(x) \quad \text { (square lattice only) } \tag{5a}
\end{equation*}
$$

so that the transition point (assuming it is unique) occurs (Potts 1952) at

$$
\begin{equation*}
z_{\mathrm{c}}=v_{\mathrm{c}}=\frac{1}{1+\sqrt{q}} \quad . \quad \text { (square lattice only) } \tag{5b}
\end{equation*}
$$

The dimensionless free energy is given by

$$
\begin{equation*}
\frac{F}{\Delta E}=-\frac{k T}{\Delta E} \ln \Lambda \tag{6}
\end{equation*}
$$

so that for low temperatures, the internal energy is given by

$$
\begin{equation*}
U=\Delta E z \frac{\mathrm{~d} \Lambda_{0}}{\mathrm{~d} z} / \Lambda_{0} \tag{7}
\end{equation*}
$$

the order parameter by

$$
\begin{equation*}
M=1+\frac{q}{q-1} \frac{\Lambda_{1}}{\Lambda_{0}}=\sum_{n} m_{n} z^{n} \tag{8}
\end{equation*}
$$

and the susceptibility by

$$
\begin{equation*}
\chi=2 \frac{\Lambda_{2}}{\Lambda_{0}}-\frac{\Lambda_{1}}{\Lambda_{0}}-\left(\frac{\Lambda_{1}}{\Lambda_{0}}\right)^{2}=\sum_{n} c_{n} z^{n} \tag{9}
\end{equation*}
$$

Note that in I the expansions were expressed in terms of $u=z^{2}$, as only even powers of z occur for $q=2$. For $q \geqslant 3$ an additional 'transverse' susceptibility can be defined (Straley and Fisher 1973) but is not considered here.

For $T \geqslant T_{\mathrm{c}}$ the internal energy is given by

$$
\begin{equation*}
U=\Delta E \frac{v}{2} \frac{q-1}{q}(1-v)-\Delta E \frac{(1-v)(1+(q-1) v)}{q} \frac{\mathrm{~d}}{\mathrm{~d} v} \ln \Phi(v) \tag{10}
\end{equation*}
$$

where ν is the lattice coordination number (4 in this case). Series expansions for the Potts model on the square lattice had been obtained previously by a number of workers. Kihara et al (1954) obtained the general- q zero-field free-energy series to order z^{16} (or equivalently to v^{16} by virtue of duality). Straley and Fisher (1973) obtained the general- q general-field low-temperature series to z^{13}. Enting (1974) analysed the field grouping for $q=3$ to order μ^{9}, however, the series were not published directly, but rather as 'coded' partial generating functions, based on the formalism of Sykes et al (1965).

The 3-state square lattice Potts model was the first application of the finite-lattice method (de Neef 1975, de Neef and Enting 1977). This work obtained the high-temperature expansion to order 23 (working in powers of $\Delta E / k T$). The finite-lattice method was used
subsequently to obtain low-temperature expansions for Λ and M for $q=3$ to order z^{31} (Enting 1980). These series were extended to z^{35} (and new series for χ added) by Adler et al (1982). The algorithm used in the present work is essentially unchanged from that used in the 1980 and 1982 studies, although the program has been modified to work with general integer values of q. The increased number of terms that we have obtained reflects the increase in available computing capacity over the last decade rather than any major change to our technique. Recently, a preprint by Bhanot et al (1993) gives series for $q=3$ and $q=8$ on the square lattice (and some new $d=3$ series). They used a transfer-matrix method related to our approach but with a more complicated (and apparently less efficient) choice of boundary conditions for their finite-lattices. Their square lattice series extend earlier results but are slightly shorter than those presented here.

The basic formulation of the finite-lattice method approximates the partition function per site, Z, as

$$
\begin{equation*}
Z=\lim _{|\Gamma| \rightarrow \infty} Z_{\Gamma}^{1 /|\Gamma|} \approx \prod_{\alpha \in A} Z_{\alpha}^{W(\alpha)} \tag{11a}
\end{equation*}
$$

where Γ denotes a graph (with $|\Gamma|$ sites) which is allowed to become arbitrarily large and A is a set of finite-lattices, α, with A closed under the operation of intersection of finite-lattices. For the square lattice, this general relation has the specific form:

$$
\begin{equation*}
Z=\lim _{N \rightarrow \infty} Z_{N N}^{1 / N^{2}} \cong \prod_{[q, r] \in A} Z_{q r}^{W(q, r)} \tag{11b}
\end{equation*}
$$

where $Z_{q r}$ is the partition function of a rectangle of dimensions $q \times r$ sites. For lowtemperature expansions, the $Z_{q r}$ are to be evaluated with a surrounding layer of fully ordered sites. The weights $W(q, r)$ depend on the set, A, over which the product is taken. In approximations (11a),(11b) an appropriate choice of weights will give Z as a series correct up to, but not including, the order of the first connected graph that will not fit into any of the rectangles of set A (Enting 1978a).

For low-temperature Potts model series, the appropriate finite-lattices are rectangles of $q \times r$ sites, surrounded by a boundary of sites fixed in state ' 0 '. Inspection of the lowtemperature expansion of the Potts model shows that the limiting graphs are trees that do not double back in any direction: all lines drawn perpendicular to bonds of the lattice intersect such trees at most once. Such a tree can span a rectangle of size $q \times r$ with $q+r-1$ sites and $q+r-2$ bonds in the tree and will give powers of $2(q+r)$ or more in the Potts model low-temperature variable, z. If one includes all rectangles such that $q+r \leqslant k$ then the series are correct to $z^{2 k+1}$. We denote the set of rectangles with $q+r \leqslant k$ by $A(k)$.

The combinatorial factors from Enting (1978b) give

$$
\begin{equation*}
W(w, \ell)=\sum_{[q, r] \in A(k)} \eta(q-w) \eta(r-\ell) \quad \text { for }[w, \ell] \in A(k) \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
& \eta(0)=1 \tag{13a}\\
& \eta(1)=-2 \tag{13b}\\
& \eta(2)=1 \tag{13c}\\
& \eta(k)=0 \quad \text { otherwise. } \tag{13d}
\end{align*}
$$

This implies

$$
\begin{align*}
W(w, \ell) & =1 & & \text { for } w+\ell=k \tag{14a}\\
& =-3 & & \text { for } w+\ell=k-1 \tag{14b}\\
& =3 & & \text { for } w+\ell=k-2 \tag{14c}\\
& =-1 & & \text { for } w+\ell=k-3 \tag{14d}\\
& =0 & & \text { otherwise. } \tag{14e}
\end{align*}
$$

In actual computation it is convenient to exploit the symmetry and consider only $w \leqslant \ell$. We define $B(k)=\{[q, r]: q+r \leqslant k, q \leqslant r\}$. The expansion becomes

$$
\begin{equation*}
Z \approx \prod_{[q, r] \in B(k)} Z_{q r}^{V(q, r)} \tag{15}
\end{equation*}
$$

with

$$
\begin{array}{ll}
V(\ell, w)=2 W(\ell, w) & \text { for } w<\ell \\
V(w, w)=W(w, w) & \\
V(\ell, w)=0 & \text { for } w>\ell . \tag{16c}
\end{array}
$$

Therefore we choose a maximum width $w_{\max }$ and work with $\ell+w \leqslant 2 w_{\max }+1$. This gives series correct to $z^{4 w_{\max }+3}$.

The partition functions are constructed by using a transfer-matrix formalism to build up ℓ columns of length w. As in all of the most recent applications of the finite-lattice method, we used the approach of building up the finite-lattices one site at a time. The computational complexity of the calculation is determined by the largest value of w that is required.

Storage is required for vectors giving the partial generating functions for all possible configurations of sites across a lattice. Without any simplification, such a vector will have q^{w} elements for a rectangle of width w. Each element must have sufficient storage for a series truncated at the requisite order (i.e. $4(k+1)$ temperature terms times three field terms in the present case). Building up the lattice one site at a time means that the "transfer matrix' is extremely sparse and the non-zero elements of the matrix can be calculated as required rather than having to be stored. The energies defined above only single out the ' 0 ' state and so the equivalence of the other states can be used to reduce the size of the vectors to approximately $q^{w} /(q-1)$!.

The precise size, $R(w, q)$ of vectors required to treat a lattice w sites across is given in terms of $r_{w m}$ the number of ways of colouring w sites with colours 0 to $q-1$, treating all permutations of colours 1 to $q-1$ as equivalent. That is

$$
\begin{equation*}
R(w, q)=\sum_{m=1}^{q} r_{w m} \tag{17a}
\end{equation*}
$$

with $r_{01}=r_{j 1}=1$ and the general relation

$$
\begin{equation*}
r_{j m}=r_{j-1, m}+m r_{j-1, m} \tag{17b}
\end{equation*}
$$

The series coefficients λ_{n}, m_{n} and c_{n} for $q=2$ to $q=10$ are listed in tables A1-A9 in the appendix. For $q=2$ the coefficients λ_{n} and m_{n} are known from the exact solutions.

The series c_{n} for $q=2$ corrects two minor errors in the last two coefficients c_{44} and c_{46} obtained by Baxter and Enting (1979) using the corner-transfer-matrix technique. (The error in the work of Baxter and Enting arose from insufficient precision in the summation of their high-field polynomials-a full-precision summation of their published coefficients for the expansion (in powers of $u=z^{2}$ and μ) gives the results obtained here.)

Although the computer program used here is restricted to integer $q \geqslant 2$, the Potts model can be generalized to non-integer q (Fortuin and Kasteleyn 1972). A number of interesting special cases occur-in particular the limit $q \rightarrow 1$ (on any lattice) gives the statistics of the bond percolation problem (Fortuin and Kasteleyn 1972, Wu 1978). This connection has been exploited in series derivations (Enting 1986). The finite-lattice method is applicable to general q and indeed one of the earliest applications of the method was in calculating the limit of chromatic polynomials which correspond to the $T \rightarrow 0$ limit of the antiferromagnetic Potts model, expressed as a function of q (Kim and Enting 1979).

3. Analysis of series

For a second-order phase transition, quantities such as the order parameter vanish at T_{c}, while quantities such as the susceptibility and specific heat diverge to infinity. For a firstorder phase transition, all these quantities are expected to attain a finite, non-zero value at T_{c}, with finite slope at T_{c}. However, little is known rigorously about the nature of the transition. Among the possibilities are: (i) Finite specific heats and susceptibilities allowing analytic continuation of the thermodynamic quantities beyond the transition point into a metastable region with a singularity $T_{c}^{*}>T_{c}$ on a 'pseudo-spinodal' line and effective 'critical exponents' at T_{c}^{*}. (ii) Finite specific heats and susceptibilities with a weak, essential singularity at T_{c}. Even with an essential singularity it may be possible to define the thermodynamic functions in the metastable region by analytic continuation in the complex plane passing around the singularity. (iii) Divergences in specific heats and susceptibilities (or their derivatives) at T_{c}. A previous attempt to use series expansions to search for an essential singularity gave inconclusive results (Enting and Baxter 1980). Kim and Joseph (1975) presented evidence of 'possible diverging fluctuations at the first-order transition'. However, none of our results seem to indicate any sort of singularity at the first-order transitions.

In analysing series expansions around the origin by Dlog Pade approximants or, more generally, differential approximants, poles and residues of the approximants will provide estimators of T_{c} and the critical exponent in the case of a second-order phase transition, while in the case of a first-order transition, the approximant will furnish an effective analytic continuation, and provide estimators of T_{c}^{*} and some effective exponent. If T_{c} is exactly known, as it is for the two-dimensional Potts models, this observation provides an effective means to distinguish between the two types of phase transitions. We show this in table 4 , where we give the Dlog Pade approximants to the magnetization series for the $q=3$ Potts model, the $q=5$ Potts model and the $q=10$ Potts model. These are representative of a second-order transition, a weak first-order transition, and a first-order transition, respectively. For the $q=3$ case, we find $T_{c}^{*} / T_{c}=0.99990$ and $\beta \approx 0.109$, compared to the exact result $\beta=\frac{1}{9}$, so that the apparent critical temperature is less than 0.01% below the true critical temperature, while the critical exponent is correct to the quoted accuracy (the true value is $\frac{1}{9}$ exactly). For the $q=5$ Potts model, we find $T_{c}^{*} / T_{c}=1.00064$ and $\beta \approx 0.077$, so that the apparent critical temperature is more than 0.06% above the true critical temperature, while the 'critical exponent' is rather erratically estimated as ≈ 0.077. For the $q=10$ Potts

Table 4. Singularities estimated from Pade approximants to spontaneous magnetization of the Potts model for $q=3,5$ and 10 .

N	[$N-1 / N]$		[N/N]	$[N+1 / N]$		
(a) 3-state Potts model spontaneous magnetization: $z_{c}=0.366025 \ldots, \beta=0.1111 \ldots$						
17	0.36595	(0.1078)	0.36615	(0.1155)	0.36591	(0.1074)*
18	0.36593	(0,1076)*	0.36583	(0.1074)*	0.36594	(0.1078)
19	0.36598	(0.1084)	0.36599	(0.1086)	0.36599	(0.1086)
20	0.36599	(0.1086)	0.36599	(0.1086)	0.36599	(0.1086)
21	0.36599	(0.1086)				
(b) 5-state Potts model spontaneous magnetization: $z_{c}=0.309016 \ldots$						
15	0.30919	(0.0768)	0.30915	(0.0763)*	0.30917	(0.0766)*
16	0.30921	(0.0772)	0.30921	(0.0772)	0.30922	(0.0772)
17	0.30921	(0.0772)*	0.30921	(0.0772)*	0.30922	(0.0772)*
18	0.30921	(0.0772)*	0.30921	(0.0772)*	0.30920	(0.0769)*
19	0.30921	(0.0772)*				
(c) 10-state Potts model spontaneous magnetization: $z_{c}=0.240253 \ldots$						
11	0.24280	(0.0436)	0.24124	(0.0346)*	0.24288	(0.0441)*
12	0.24288	(0.0441)*	0.24278	(0.0433)*	0.24269	(0.0428)*
13	0.24269	(0.0428)*	0.24271	(0.0430)*	0.24267	(0.0427)*
14	0.24268	(0.0427)*	0.24275	(0.0432)*	0.24276	(0.0433)*
15	0.24276	(0.0433)*				

model, we find $T_{\mathrm{c}}^{*} / T_{\mathrm{c}}=1.0104$ and $\beta \approx 0.047$, so that the apparent critical temperature is more than 1.0% above the true critical temperature, while the 'critical exponent' is rather erratically estimated as ≈ 0.05. (We.emphasize that this so-called 'critical exponent' has no physical meaning.)

This method of analysis alone appears to provide a reliable indicator of the order of a phase transition when the critical temperature is known exactly. For a exactly second-order transition, the estimates of the critical temperature lie very slightly below T_{c}. (The $q=2$ or Ising case for which the magnetization can be represented exactly by low-order Dlog Pade approximants is an exception.) Even for the marginal case of $q=4$ (the critical dimension, where the model undergoes a second-order phase transition, but with logarithmic corrections to the critical exponents), we find $T_{c}^{*} / T_{\mathrm{c}}=0.99975$, and $\beta=0.0906$, which is satisfyingly close to the exact value of $\frac{1}{11}$. For the weak first-order $q=5$ case it is already clear that T_{c}^{*} / T_{c} is significantly bigger than 1 , while the 'exponent' estimates are much more erratic than for the $q \leqslant 4$ case.

The other numerical approach to distinguish between a first- and second-order phase transition is to compare numerical approximations to the free energy and internal energy in the high- and low-temperature regimes. (On the square lattice, we obtain the hightemperature series by duality from the low-temperature series.) In figure 1 we show the plots of the free energy for $q=3,5$ and 10 . For $q=3$ the curve appears smooth, with no gradient discontinuities. At $q=5$, a discontinuity in the gradient at T_{c} is already apparent, while at $q=10$ the discontinuity in the gradient is manifest. In figure 2 we show the corresponding curves for the internal energy. The non-zero latent heat characteristic of a first-order transition is already manifest at $q=5$. The numerical approximations used in these figures are the approximants formed by the method of differential approximants (DA) (Guttmann 1989, pp 83ff). This method generalizes Padé approximants by fitting an ordinary differential equation of the form

Figure 1. Dimensionless free energy, $F / \Delta E$, of the square lattice Potts model for $q=3$ (solid curve), $q=5$ (short dashes) and $q=10$ (long dashes) illustrating the change from continuous to first-order transitions. Curves are the average of typically 10 differential approximants.

Figure 2. Dimensionless internal energy, $U / \Delta E$, of the square lattice Potts model for $q=3$ (solid curve), $q=5$ (short dashes) and $q=10$ (long dashes). Each curve is the average of typically 10 differential approximants.

$$
\sum_{i=0}^{m} Q_{i}(x) D^{i} f(x)=P(x)
$$

(where $D^{i}=\mathrm{d}^{i} / \mathrm{d} x^{i}$) to the available series terms. Here $Q_{k}(x)=\sum_{i=0}^{m_{k}} q_{k i} x^{i}$ and $P(x)=\sum_{i=0}^{m_{0}} p_{i} x^{i}$ are polynomials. We chose $q_{m 0}=1$, so that the origin is not a regular singular point. This allows numerical integration of the differential equation starting at $x=0$ in order to obtain the values plotted in the figures. For magnetization series, homogeneous DA's ($P \equiv 0$) are often most useful. (For $m=1$ this corresponds to logarithmic derivative Pade approximants.) The degrees of Q_{k} and P are chosen to use all (or most) of the
available series terms. In principle, any order of differential equations can be used, but first order ($m=1$) was mostly used in the current work. Finding the coefficients of Q_{k} and P reduces to solving a system of linear equations, but this system is often ill-conditioned, so that care must be taken in its solution.

This differential equation is then integrated numerically to obtain estimates of the desired physical quantities. In all cases a number (typically 10) of DA's using all the available coefficients was integrated. These were then averaged to obtain the means and standard deviations shown in the tables and graphs below. All calculations were performed in quadruple precision (approximately 34 decimal places), so that all series terms could be represented without loss of precision.

We performed the numerical integration with an extrapolation method of the BulirschStoer type, as described by Hairer (1987, section II.9). The integrations were performed in terms of the series expansion variable, but results are expressed in terms of $k T / \Delta E$.

The integrations described above clearly allow us to qualitatively distinguish between a first- and second-order phase transition. A much more stringent test is to quantitatively reproduce the magnetization gap ΔM and the latent heat ΔU for $q \geqslant 5$. These have been calculated by Baxter (1973, 1982). These exact results are shown in table 2 . The agreement between numerical and exact results is, as might be expected, best for q close to 10 , and worst near $q=4$. Further details of the calculations are given in the subsections below.

We now discuss our numerical results in greater detail.

3.1. Free energy and internal energy

We integrated the equations defining approximants to the free energy and the internal energy series from $T=0$ and $T=\infty$ to T_{c} in order to determine the critical value of the freeenergy and the latent heat (for $q>4$) from the discontinuity at T_{c}. For low temperatures, F was derived from approximants to $\ln \Lambda$ in powers of z, while for high temperatures we use approximants to $F / k T-2 \Delta E / k T$ expanded in powers of v. For the energy, high-temperature and low-temperature approximants were constructed from the respective expansions (in powers of v and z) to $U / \Delta E-2$. For $q \leqslant 4$, table 1 compares the exact values of $F / \Delta E$ to the series estimates. For $q \geqslant 5$ table 5 gives the series estimates for $F_{\mathrm{c}} / \Delta E$ and $\Delta U / \Delta E$, which should be compared to the exact values in table 2 . The critical value of the free energy is obtained very accurately for all values of q. As expected from the known exact results (Baxter 1973), U was found to be continuous at T_{c} for $q \leqslant 4$. From the tables, it can be seen that the exact results for the latent heat are reproduced to within a few percent, except at $q=5$. However, at $q=5$ the latent heat is found to be larger than the exact value, which makes the order of the phase transition more obvious.

Table 5. Square lattice Potts model, $\Delta M, \Delta U$ and F_{c} results from series analysis. Compare to exact values in table 2. Free energies are defined relative to a ground-state energy of zero.

q	$k T_{\mathrm{c}} / \Delta E$	ΔM	$\Delta U / \Delta E$	$F_{\mathrm{c} /} / \Delta E$
5	0.85152841	0.643 ± 0.002	0.085 ± 0.015	-0.05204
6	0.80760682	0.728 ± 0.010	0.200 ± 0.010	-0.04758
7	0.77305889	0.775 ± 0.010	0.375 ± 0.027	-0.04309
8	0.74490446	0.817 ± 0.003	0.499 ± 0.007	-0.03951
9	0.72134751	0.846 ± 0.002	0.592 ± 0.014	-0.03598
10	0.70123160	0.862 ± 0.030	0.706 ± 0.005	-0.03320

The behaviour of the free energy and internal energy as functions of temperature is shown in figures 1,2 and 3 . Since our primary objective is to test techniques that are applicable in three dimensions where T_{c} is unknown, figure 3 which shows details of the transition region for $q=5$ is of particular interest. The figure shows individual approximants, indicating the spread that occurs in the free energy itself and the precision with which the transition could be located if T_{c} were not known.

Figure 3. Detail of the approximants to the Potts model free energy ($F / \Delta E$) around the transition for $q=5$. The plot includes seven high-temperature approximants (shown as dashed) and 13 low-temperature approximants (shown as solid), although not all of these can be distinguished on this scale.

3.2. Magnetization

We integrated the approximants to the magnetization series $M(z)$ from $T=0$ to $T=T_{c}$ in order to determine the discontinuity ΔM at T_{c}. As expected from the known exact results (Baxter 1982), M vanished at T_{c} for $q \leqslant 4$. Comparing tables 2 and 5 , it can be seen that the exact results are reproduced to within a few percent, except at $q=5$. At $q=5$ the error in the magnetization discontinuity is some 27%, falling to less than 1.5% at $q=10$. A plot of the magnetization for several values of q is shown in figure 4 .

3.3. Susceptibility and specific heat

The susceptibility and specific heat properties are not known in general. Certainly for $q \leqslant 4$ they are known to diverge at T_{c}, but for $q \geqslant 5$ the behaviour is less well understood. Nevertheless, it is expected that the susceptibility and specific heat should remain finite at T_{c}, though this has not been proved. In order to study these rapidly increasing quantities, various sequence transformation were used to generate the most appropriate series, and hence DA , for numerical integration. In general, if a quantity $f(x)$ behaves at the origin of integration like x^{k}, it is usually desirable to remove this term and study $f(x) / x^{k}$ instead. In addition, if a function is increasing rapidly, but not necessarily diverging, studying the reciprocal of the function frequently provides better converged approximants. These two

Figure 4. Spontaneous magnetization of the square lattice Potts model for $q=3,5$ and 10 . Each curve is the average of typically 10 differential approximants.
transformations are often used together so that, for example, we worked with the series for $z^{4} / \chi(z)$ (where χ is the susceptibility), rather than $\chi(z)$ itself.

In table 6 we show the results for the specific heat and susceptibility at the critical temperature, when approached from both the high- and low-temperature side. We observe a monotonic decrease in the value of the specific heat at T_{c} with increasing q. For $q=5$ and $q=6$ the integration is too unreliable to quote a result. The numerical evidence gives no suggestion of asymmetry in the specific heat values above and below T_{c}, though our error bars are too large to give a useful test of symmetry.

Table 6. Square lattice Potts model, susceptibility and specific heat results from series analysis.

q	$k T_{c} / \Delta E$	$\chi\left(T_{c}^{-}\right)$	$C_{0}\left(T_{c}^{-}\right)$	$C_{0}\left(T_{c}^{+}\right)$
5	0.85152841	100 ± 50	-	-
6	0.80760682	36 ± 10	-	-
7	0.77305889	15 ± 4	93 ± 3	250 ± 160
8	0.74490446	7.3 ± 0.6	72 ± 20	75 ± 10
9	0.72134751	3.4 ± 0.9	40 ± 5	42 ± 4
10	0.70123160	2.44 ± 0.09	31.8 ± 2.8	33 ± 3

In connection with the error bars, the value for $C_{0}\left(T_{c}^{-}\right)$for $q=7$ seems anomalously low and yet, as for all the other cases, the range reflects the spread of approximants that were fitted. This anomaly serves to emphasize the fact that the ranges are obtained empirically, rather than being based on any statistical theory, and in addition reflect a relatively small number of cases.

Recently Billoire et al (1992) published a Monte Carlo study of the $q=10$ Potts model specific heat. They obtained a value of 12.3 for $C_{0}\left(T_{c}\right)$ compared to our estimate of 32 . However, re-analysis (Billoire, private communication) indicates that the published value is a serious underestimate, due to the fact that his system was not large enough to eliminate finite size effects. However, Billoire is able to estimate the difference between the specific heats on the ordered and disordered side of the critical temperature and finds a value of
0.447 at $q=10$ and 0.223 at $q=7$. Such small differences, if they exist, cannot be resolved by our numerical estimates.

For the susceptibility we also observe the same monotonic trend of decreasing values at T_{c} with increasing values of q. As far as we are aware, this is the first study of this quantity.

4. Discussion of results

We have shown how the finite-lattice method may be used to extend Potts model series, and have used the method to substantially extend a number of series for a range of q values. The series could all be extended by several further terms (typically four) without excessive demand on computing resources, but we did not consider this necessary for our purposes. We have used the series, combined with appropriate numerical techniques, to show how a first-order phase transition can be distinguished from a second-order transition. In this way we find extremely strong evidence for the known first-order transition for $q \geqslant 5$. The methods developed in this paper are used in a subsequent paper to investigate the nature of the phase transition for the three-state three-dimensional Potts model.

Acknowledgments

Financial support from the Australian Research Council is acknowledged. IGE wishes to thank Doochul Kim for pointing out the inconsistency in the series published by Baxter and Enting. The authors wish to thank John O'Brien, Robert Bursill and Debbie Wood for assistance with some of the numerical work.

Appendix. The series

Tables A1 to A9 list the series expansions that we have calculated.

Table A1. $q=2$ square lattice Potts model.

	Partition function	Magnetization	Susceptibility
0	1	1	0
2	0	0	0
4	1	-2	1
6	2	-8	8
8	5	-34	60
10	14	-152	416
12	44	-714	2791
14	152	-3472	18296
16	566	-17318	118016
18	2234	-88048	752008
20	9228	-454378	4746341
22	39520	-2373048	29727472
24	174271	-12515634	185016612
26	787246	-66551016	1145415208
28	3628992	-356345666	7059265827
30	17019374	-1919453984	43338407712
32	81011889	-10392792766	265168691392

Table A1. (continued)

34	390633382	-56527200992	1617656173824
36	1905134695	-308691183938	9842665771649
38	9385453576	-1691769619240	59748291677832
40	46653815395	-9301374102034	361933688520940
42	233788460256	-51286672777080	2188328005246304
44	1180111379105	-283527726282794	13208464812265559
46	5996452414310	-1571151822119216	79600379336505560
48	30653752894948	-8725364469143718	479025509574159232
50	157568531636534	-48552769461088336	2878946431929191656
52	814062277383328	-270670485377401738	17281629934637476365
54	4225485275503702	-1511484024051198680	103621922312364296112
56	22027957435784967	-8453722260102884930	620682823263814178484

Table A2. $q=3$ square lattice Potts model.

	Partition function	Magnetization	Susceptibility
0	1	1	0
1	0	0	0
2	0	0	0
3	0	0	0
4	2	-3	2
5	0	0	0
6	4	-12	16
7	4	-12	16
8	6	-36	100
9	24	-108	216
10	24	-210	844
11	68	-480	1552
12	190	-1746	7844
13	192	-2340	12112
14	904	-10566	60268
15	1420	-19500	118944
16	3106	-53976	424072
17	9940	-152604	1081392
18	14572	-329424	3201728
19	49268	-971304	8670688
20	102886	-2403291	25713154
21	225004	-5955576	67206560
22	652940	-16858584	203077760
23	1301256	-4033776	538881432
24	3513806	-110301321	1558159918
25	8591792	-287061696	4250639632
26	19326248	-730223208	11956293152
27	52781148	-1985703720	33296697848
28	120709472	-5070001716	92820406096
29	306339824	-13446444720	257249275776
30	77982608	-3560214232	721023458656
31	1852672272	-92442918828	1986080278600
32	4847112666	-247542929499	5561045323298
33	11876028924	-648347258796	15359165767512
34	29820747120	-1713912378552	42717426328784
35	76592341404	-4559593914288	118457421095792
36	189184240720	-11991311519034	328170465563836
37	486960149980	-31943103715128	909829346983664

Table A2. (continued)

38	1230269248240	-84599939924118	2520622606225868
39	3111387440800	-224265087762144	6973368153491880
40	8008990142050	-597511883594619	19322697243220158
41	20253094484576	-1584231404110704	53409977638363032
42	52022867385004	-4220295103426356	147820297067842856
43	133290716187904	-11234571367790256	408655295665071080
44	340509251651724	-29892611571334848	1129521213462962520
45	878668731837260	-79763126301078204	3122011116123891464
46	2252826675055124	-212500082474434470	8624059746484047468
47	5806881993986032	-567062477783225940	23820051913808354000

Table A3. $q=4$ square lattice Potts model.

	Partition function	Magnetization	Susceptibility
0	1	1	0
1	0	0	0
2	0	0	0
3	0	0	0
4	3	-4	3
5	0	0	0
6	6	-16	24
7	12	-32	48
8	3	-28	120
9	72	-288	648
10	66	-400	1608
11	144	-1024	4176
12	822	-5268	21093
13	480	-5920	38064
14	3624	-32160	175608
15	8508	-82720	494616
16	10482	-163020	1365726
17	65856	-737568	5077200
18	94794	-1482784	13549704
19	289452	-4644992	43359768
20	1008420	-15095436	140590629
21	1561032	-33307648	389348688
22	6503532	-117747376	1296882504
23	15224016	-312435552	3834279072
24	34976979	-842726356	11499126642
25	125988144	-2747491616	36680416368
26	263308986	-7020371952	107193301920
27	805096764	-21348043296	333178056720
28	2319752694	-62732977996.	1019415082779
29	5402283396	-169814283264	3037827148632
30	17415097542	-524 175339168	9438120599520
31	44310604860	-1465377774880	28340399493144
32	120262240257	-4227843277380	86034549347280
33	361259402196	-12642298828704	263586587279472
34	915351056190	-35439363555136	791349060376776
35	2690038490904	-105238706111616	2417035981737624
36	7502832907557	-305746580682940	7324176466760445
37	20120170776144	-877576741412064	22116375075991056

$K M$ Briggs et al
Table A3. (continued)

38	59297057120916	-2604469134327440	67378910515598736
39	160763118088260	-7498478213381792	203361542589030720
40	453982230850713	-21932701743507244	616448061791922708
41	1302433413699684	-64438624831555744	1869466917535240656
42	3570759048806208	-186505497431699280	5644507206242675400
43	10294158055979004	-549250323031345792	17116665818567515608

Table A4. $q=5$ square lattice Potts model.

	Partition function	Magnetization	Susceptibility
0	1	1	0
1	0	0	0
2	0	0	0
3	0	0	0
4	4	-5	4
5	0	0	0
6	8	-20	32
7	24	-60	96
8	-4	-10	120
9	144	-540	1296
10	176	-830	3032
11	168	-1440	7392
12	2348	-12930	48856
13	1200	-12660	86496
14	8792	-72250	405368
15	34056	-266220	1473600
16	21092	-364490	3423800
17	249768	-2407020	16113120
18	466952	-5493880	45751360
19	894840	-14148000	141321696
20	5545356	-66328975	563442380
21	7573416	-133669680	1532848896
22	31825552	-507900420	5523490864
23	109857648	-1701343560	18731006352
24	183834532	-4003389435	55057588668
25	911149824	-16157898840	201014668032
26	2193242320	-44696695560	626745614848
27	5622993528	-131231068680	2011978174032
28	22900219536	-476230251170	6990596535720
29	49840002048	-1272406453680	21530011859136
30	170996310488	-4263523739780	72383200786800
31	547847760000	-13708308759 180	238951933550064
32	1328084520588	-38993908456195	754059402907804
33	4859021632872	-133683456488820	2546174053634736
34	13419413642968	-401 454864043460	8178788230326672
35	38470066484088	-1235148320717160	26521657626107232
36	131314151349976	-4088698146399590	88159797282578792
37	351804517490808	- -12164467726392600	282022546158446016
38	1124247366814936	-39182468233883110	927533183411394600
39	3501627546572496	-124429743346539840	3032466102194828496

Table A5. $q=6$ square lattice Potts model.

	Partition function	Magnetization	Susceptibility
0	1	1	0
1	0	0	0
2	0	0	0
3	0	0	0
4	5	-6	5
5	0	0	0
6	10	-24	40
7	40	-96	160
8	-15	18	100
9	240	-864	2160
10	390	-1608	5440
11	80	-1536	10720
12	5200	-26478	97835
13	3120	-26208	172960
14	16000	-131472	781960
15	100360	-695136	3635280
16	35830	-705 282	7301860
17	. 676000	-6069600	40513440
18	1760530	-17145840	130258520
19	1919240	-33196224	362286640
20	20588740	-219104358	1769583805
21	31455520	-454883520	4908084320
22	102369320	-1589271912	17743365920
23	534753600	-7015071072	71015805120
24	750136775	-14801255718	202223457160
25	4129522880	-66670704288	808396021120
26	13033586990	-217598415 192	2788938475160
27	25901162520	-571905903072	8810020871360
28	139208616380	-2509604877582	34575265840675
29	331986591080	-7057292732736	111570542543280
30	1007597125790	-23164508689248	386492454099760
31	4245621181560	-88855085448096	1424843663011600
32	9716604610065	-248631471 063042	4599792447092840
33	37562154772200	-915400373994912	16638531775796160
34	125381210315310	-3099289015999584	58025774058205040
35	327356630630880	-9366267243722112	193486559359486160
36	1307950724960515	-34832974106130846	700334584661741705
37	3808355804296960	-110265822998373408	2373578442196407200
38	11776254793724920	-362663928629146008	8176367783196681800
39	43485616464063400	-1292915644379929056	29029320310487709600

Table A6. $q=7$ square lattice Potts model.

	Partition function	Magnetization	Susceptibility
0	1	1	0
1	0	0	0
2	0	0	0
3	0	0	0
4	6	-7	6
5	0	0	0
6	12	-28	48

Table A6. (continued)

7	60	-140	240
8	-30	56	60
9	360	-1260	3240
10	744	-2842	9156
11	-180	-1120	13680
12	9834	-47754	175116
13	7440	-51940	319920
14	23952	-207102	1329156
15	240180	-1547980	7815840
16	65046	-1295028	14115696
17	1478940	-12844860	86758800
18	5278404	-45718288	323797728
19	3298380	-66714200	798016320
20	59010978	-588028203	4634018046
21	110649780	-1360197160	13634236320
22	253716060	-4028581648	47009324592
23	1946334840	-23146611600	221905374120
24	2709355266	-47264561869	625484761002
25	13823742000	-214532828720	2603227959120
26	58205917656	-851529468216	10144975819968
27	96209517780	-2020426505160	31145410317960
28	603180202992	-10061684149216	134214946004952
29	1719615462960	-31538686100880	464836718946240
30	4359818416824	-96228336284304	1603857725501712
31	23080980564720	-433388885935180	6571731067255800
32	55306170014214	-1246332722187651	21917612779277742
33	201109899966180	-4603433032789500	82056490326269640
34	826406173630152	-17921451461635792	313584713235621024
35	2050391032558740	-53354558614082880	1065067369034097360

Table A7. $q=8$ square lattice Potts model,

	Partition function	Magnetization	Susceptibility
0	1	1	0
1	0	0	0
2	0	0	0
3	0	0	0
4	7	-8	7
5	0	0	0
6	14	-32	56
7	84	-192	336
8	-49	104	0
9	504	-1728	4536
10	1274	-4640	14504
11	-672	0	15792
12	16730	-78696	288169
13	15792	-96960	556752
14	30464	-293056	2062088
15	497700	-3061440	1513264
16	135506	-2341976	25582802
17	2802240	-24026304	165495792
18	13293602	-106819264	720185368

Table A7. (continued)

19	5007828	-122471424	1588846728
20	141712956	-1357292536	10588862669
21	330138984	-3611133696	33856668720
22	530780740	-8864133984	108773186200
23	5749786896	-64316947776	596266427232
24	8786258971	-135447363816	1709093729238
25	37764443472	-579146076096	7126592218032
26	207473441098	-2784296946528	31462130162512
27	316373962548	-6222589183680	94727643465168
28	2063246723202	-32959913315576	433862737592571
29	7171329549804	-118042425288960	1637231047784136
30	15593869260998	-333304465512512	5555976600192816
31	96599146653492	-1696556998769088	24859503635800680
32	258118001999361	-5212673379084904	86979393078997048
33	842597112773724	-18588152419905216	328938272280954672
34	4144519614837910	-82387658612630912	1373037610865700024
35	10425182606664504	-248254672744051968	4775687621042306472

Table A8. $q=9$ square lattice Potts model.

	Partition function	Magnetization	Susceptibility
0	1	1	0
1	0	0	0
2	0	0	0
3	0	0	0
4	8	-9	8
5	0	0	0
6	16	-36	64
7	112	-252	448
8	-72	162	-80
9	672	-2268	6048
10	2016	-7110	21808
11	-1456	2016	16576
12	26392	-121338	444848
13	30240	-170100	9919744
14	32464	-379890	2987248
15	929488	-5535180	27006336
16	297352	-4188870	44211856
17	4789456	-41053068	289598400
18	29374864	-224389944	1462179584
19	7376432	-213735312	2947217728
20	299855320	-280105551	21805200184
21	855405712	-8621268768	76569774848
22	993563072	-17694788796	228101077664
23	14579082336	-156613057272	1422679507872
24	25470896744	-353319727311	4234628561272
25	89577509504	-1377018275976	17279449575808
26	621970314656	-78759111823192	857737774560
27	950903499504	-172516546536	257362505607200
28	5956796021984	-92844355601646	1218813810751024
29	24987280793216	-380787988636944	5033799620045952
30	49220523168272	-1014469914963708	16823743332996640
31	333054308294400	-5604585935358060	80496531779269984

Table A9. $q=10$ square lattice Potts model.

	Partition function	Magnetization	Susceptibility
0	1	1	0
1	0	0	0
2	0	0	0
3	0	0	0
4	9	-10	9
5	0	0	0
6	18	-40	72
7	144	-320	576
8	-99	230	-180
9	864	-2880	7776
10	3006	-1036	31392
11	-2592	5120	15552
12	39348	-177810	653391
13	53280	-281920	1452096
14	25992	-454800	4102488
15	1605456	-9336640	45188640
16	631062	-7348830	73492200
17	7576128	-65490240	474281280
18	58741002	-432882160	2754369000
19	11555280	-362940800	5188189536
20	577400796 .	-5306650050	41404785525
21	1976057856	-18788133760	159998233536
22	1734448752	-32994025240	444259126224
23	32942677248	-344082515520	3087795261312
24	66351732687	-846585038170	9670634655948
25	192109371264	-2979703762880	38172808778112
26	1631012967630.	-19830863413320	210547287205128
27	2631716943408	-44403893943360	639171550340352
28	15171912275256	-233 105484042490	3068237140062435
29	75277805632848	-1085 356198700160	13833211331827296
30	141748393419918	-2799174780003360	45883584616400640
31	991716118694640	-16218543098061760	230335082028303264

References

Adler J, Enting I G and Privman V 1982 J. Phys. A: Math. Gen. 16 1967-73
Baxter R J 1973 J. Phys. C: Solid State Phys. 6 L445-8
_— 1982 J. Phys. A: Math. Gen. 153329
Baxter J and Enting I G 1979 J. Stat. Phys. 21 103-23
Bhanot G, Creutz M, Glässner U, Horvath I, Lacki J, Schilling K and Weckel J 1993 Low temperature expansions for Potts models Preprint
Billoire A, Lacaze R and Morel A 1992 Nucl. Phys. B 370773
Black J L and Emery V J 1981 Phys. Rev. B 23429
de Neef T 1975 Some applications of series expansions in magnetism PhD Thesis Technische Hogeschool, Eindhoven
de Neef T and Enting I G 1977 J. Phys. A: Math. Gen. 10 801-5
den Nijs M P M 1979 J. Phys. A: Math. Gen. 121857
-_ 1983 Phys. Rev. B 271674
Enting I G 1974 J. Phys. A: Math. Gen. 7 1617-26

- 1978a Aust. J. Phys. 31 515-22
_- 1978b J. Phys. A: Math. Gen. 11 563-8
-_ 1980 J. Phys. A: Math. Ger. 13 L133-6
—— 1986 J. Phys. A: Math. Gen. 19 2841-54
Enting I G and Baxter R J 1980 J. Phys. A: Math Gen. 13 3723-34
Fortuin C M and Kasteleyn P W 1972 Physica 37 536-54
Guttmann A J 1989 Asymptotic analysis of power-series expansions Phase Transitions and Critical Phenomena vol 13, ed C Domb and J L Lebowitz (New York: Academic)
Guttmann A J and Enting I G 1993 J. Phys. A: Math. Gen. 26 807-21
Hairer E et al 1987 Solving Ordinary Differential Equations I, Nonstiff Problems (Springer Series in Computational Mathematics 8) (Berlin: Springer)
Kihara T, Midzuno Y and Shizume T 1954 J. Phys. Soc. Japan 9 681-7
Kim D and Enting I G 1979 J. Comb. Theory B 26 327-26
Kim D and Joseph R I 1975 J. Phys. A: Math. Gen. 8 891-904
Nienhuis B 1982 J. Appl. Phys. 15199
Potts R B 1952 Proc. Camb. Phil. Soc. 48106
Straley J P and Fisher M E 1973 J. Phys. A: Math. Gen. 6 1310-26
Sykes M F, Essam, J W and Gaunt D S 1965 J. Math. Phys. 6 283-98
Wu F Y 1978 J. Stat. Phys. 18 115-23
-_ 1982 Rev. Mod. Phys. 54 235-68

